See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358459929

Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water

Book - February 2022
DOI: 10.1016/C2020-0-02583-1
CITATIONS
0
READS
357
3 authors, including:
Vineet Kumar
GD Goenka University Gurgaon
139 PUBLICATIONS 1,103 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Call for Papers: Special Issue on Microorganisms in Screening and Degradation of Endocrine disrupting chemicals (EDCs); Journal: Frontiers in Microbiology View project

Call for Paper (American Journal of Environmental Sciences " Special IssueRecent Advances in Green Technology for Industrial Pollution Control View project

Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water

Edited By Vineet Kumar • Maulin P. Shah • Sushil Kumar Shahi

Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water

Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water

Edited by

Vineet Kumar

Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur-440020, Maharashtra, India

Maulin P. Shah

Applied and Environmental Microbiology, Bharuch, India

Sushil Kumar Shahi

Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-323-85763-5

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Susan Dennis Acquisitions Editor: Susan Dennis Editorial Project Manager: Maria Elaine D. Desamero Production Project Manager: Kumar Anbazhagan Cover Designer: Mark Rogers

Typeset by Aptara, New Delhi, India

Dedicated to our teachers, and mentors, from whom I continue to learn, and to my family for their support, blessings, motivation, and love. — Vineet Kumar

Dedicated to my family especially my wife without whose support this book would not have been possible. — Maulin P. Shah

This book is dedicated to my daughter and my wife. Their patience and understanding have given me the time and inspiration to research and editing this project. — **Sushil Kumar Shahi**

Contents

Contributors		.XXV
About the Editor	rs	xxxv
Preface	х	xxix
Acknowledgmen	nts	. xliii
CHAPTER 1	Phytoremediation and environmental	
	bioremediation	1
	Arjun Mahato, Dipita Ghosh and Subodh Kumar Maiti	
1.1	Introduction	1
1.2	Constructed wetlands as phytoremediation tool of wastewater	2
	1.2.1 Types of constructed wetland	3
1.3	Design criteria and calculations	6
	1.3.1 Site selection	6
	1.3.2 Hydrological factors	6
	1.3.3 Vegetation	7
	1.3.4 Substrates	9
1.4	Metal removal mechanisms in constructed wetlands	10
1.5	Case studies	12
	1.5.1 Treatment of dairy wastewater with hybrid	
	macrophyte assisted vermifilter	12
	1.5.2 Macrophytes for salinity remediation of wastewater	12
1.6	Phytoremediation and environmental bioremediation in	
	other areas	13
	1.6.1 Phytoremediation in mine spoil	13
	1.6.2 Phytoremediation of radionuclides	13
	1.6.3 Phytoremediation of E-wastes	13
	1.6.4 Phytoremediation of oil contamination in coastal	
	ecosystem	14
1.7	Conclusion	14
	Acknowledgments	15
	References	15

CHAPTER 2	Phytoremediation: The ultimate technique for	
	reinstating soil contaminated with heavy metals	
	and other pollutants	19
	A.F. Ogundola, E.A. Adebayo and S.O. Ajao	
2.1	Introduction	19
2.2	Attributes of soil in relation to pollution/contamination	21
2.3	Sources of soil and water contamination and the consequences	22
2.4	Different types of pollutants and their fate in the soil	
	environment	23
2.5	Different cleaning techniques and their shortcomings	24
	2.5.1 Traditional methods	24
2.6	Components of phytoremediation	30
	2.6.1 Phytoaccumulation/phytoextraction	30
	2.6.2 Phytostabilization	33
	2.6.3 Phytovolatilization	34
	2.6.4 Phytodegradation	35
2.7	Hydraulic control	36
2.8	Hyperaccumulating plants for different environments	37
2.9	Enhancement of phytoremediation process	3/
	2.9.1 Genetically engineered plants	38
	(nlent, microha combination sustame)	20
	(plant-incrobe combination systems)	38
	2.9.5 Energy crops	30
	2.9.5 The outstanding reports on phytoremediation technique	39
2 10	Conclusion	39
•	References	40
	Division A sustainable success annuals	
CHAPTER 3	Phytoremediation: A sustainable green approach	40
	for environmental cleanup	49
	Rafael de Souza Miranda, Cácio Luiz Boechat,	
	Marcela Rebouças Bomtim, Jorge Antonio Gonzaga Santos Daniel Comos Coelho, Sara Julliano Pibairo Assunção	5,
	Kaíque Mesquita Cardoso and Emanuelle Rurgos Cardoso	
2.1		40
3.1	Introduction Deutoremodiation as a alegnum technology	49 50
3.2	r nytoremediation as a cleanup technology	50
	3.2.1 Definition	50
3.3	The potential of phytoremediation	57
5.5	3.3.1 Related to plants	52 52
	5.5.1 Related to plants	54

		3.3.2 Interface of the soil-tolerant plant	56
	3.4	Case of study	61
		3.4.1 Selection of tolerant plants for remediation of	
		mining waste contaminated with multimetals	61
	3.5	Final considerations	69
		References	69
CHAPTER	4	Recent developments in aquatic macrophytes	
		for environmental pollution control: A case	
		study on heavy metal removal from lake water and	
		agricultural return wastewater with the use	
		of duckweed (Lemnacea)	75
		Günay Yildiz Töre and Özge Bahar Özkoç	
	4.1	Introduction	75
	4.2	Phytoremediation technology: an overview	77
		4.2.1 Phytoextraction	78
		4.2.2 Phytostabilization	79
		4.2.3 Phytovolatilization	80
		4.2.4 Phytodegradation/phytotransformation	81
		4.2.5 Rhizodegradation/phytostimulation	82
		4.2.6 Phytofiltration/rhizofiltration	83
	4.3	Phytoremediation of heavy metals	83
		4.3.1 Zinc	83
		4.3.2 Copper	84
		4.3.3 Nicel	84
		4.3.4 Cadmium	85
		4.3.5 Lead	86
		4.3.6 Chromium	87
	4.4	Aquatic macrophytes for environmental pollution control	87
		4.4.1 Benefits of macrophytes as bioindicators in	
		water pollution	87
		4.4.2 Benefits of macrophytes as bioindicators in	
		water pollution	89
		4.4.3 Macrophytes types for removing heavy metals	91
		4.4.4 Biosorption and bioaccumulation mechanisms of	
		heavy metals	98
		4.4.5 Factors affecting for heavy metal removal in	
		Phytoremidation	100
		4.4.6 Waste management and disposal in phytoremidation	102
	4.5	Case study	106

		4.5.1 Investigated area	106
		4.5.2 Materials & methods	106
		4.5.3 Results and discussion	107
4	4.6	Conclusions	112
		Acknowledgment	113
		References	113
CHAPTER !	5	Weed plants: A boon for remediation of heavy	
		metal contaminated soil	127
		Chinmayee M. Devi and T.S. Swapna	
Ę	5.1	Introduction	127
Ę	5.2	Heavy metals	128
Ę	5.3	Categories of plants growing on metal contaminated soils	128
		5.3.1 Metal excluders	129
		5.3.2 Metal accumulators or hyperaccumulators	129
		5.3.3 Metal indicators	129
į	5.4	Technologies for the reclamation of polluted soils	129
Ę	5.5	Mechanism of phytoremediation	130
Ę	5.6	Weeds	130
		5.6.1 Types of weeds	131
ţ	5.7	Weed plants as phytoremediator	132
Ę	5.8	Future of phytoremediation using weed plants	137
į	5.9	Conclusion	137
		References	138
CHAPTER (6	Oxidoreductase metalloenzymes as green	
		catalyst for phytoremediation of environmental	
		pollutants	141
		Anindita Hazarika, Shilpa Sakia, Bidyalaxmi Devi, Meera Yaday and Hardeo Singh Yaday	
(6.1	Introduction	141
	6.2	Phytoremediation	142
(6.3	Degradation of organic pollutants by phytoremediation	145
(6.4	Oxidoreductase enzymes in phytoremediation of	
		organic pollutants	145
		6.4.1 Laccases	145
		6.4.2 Oxygenases	145
		6.4.3 Peroxidases	146
		6.4.4 Nitroreductase	147
(6.5	Transgenic plants used in phytoremediation of	
		organic pollutants	148

	6.6	Phytoremediation of dyes and effluents mediated	149
	6.7	Heavy metal detoxification by phytoremediation	154
	6.8	Role of phytochelatin and metallothioneine in plant	
		metallic stress	156
	6.9	Role of antioxidant enzymes against plant metallic stress	157
6	6.10	Transgenic plants in the phytoremediation of heavy metals	160
6	5.11	Conclusion	162
		Acknowledgment	162
		References	162
CHAPTER	7	Phytoextraction of heavy metals: Challenges and	
•••••••	-	onnortunities	173
		Jitendra Prasad, Shikha Tiwari, Bijendra Kumar Singh and Nawal Kishore Dubey	170
	7.1	Introduction	173
	7.2	Phytoremediation: a sustainable green approach for	
		environmental issues	174
		7.2.1 Phytoextraction	177
		7.2.2 Phytodegradation	177
		7.2.3 Phytodesalination	177
		7.2.4 Phytostabilization	177
		7.2.5 Phytovolatilization	178
		7.2.6 Phytofiltration	178
	7.3	Phytoextraction: promising strategy to remediate heavy	
		metal pollution	178
		7.3.1 Metal hyperaccumulating plants: key assets	
		of phytoextraction	180
		7.3.2 Factors affecting phytoextraction	181
	7.4	Challenges associated with phytoextraction process	182
	7.5	Advancements in phytoextraction technique	182
	7.6	Conclusion	183
		Reference	184
CHAPTER	8	Potential and prospects of weed plants in phytoremediation and eco-restoration of heavy	
		metals polluted sites Vivek Rana, Sneha Bandyopadhyay and Subodh Kumar Maiti	187
	8.1	Introduction	187
	8.2	Phytoremediation: a green technology	189
		8.2.1 Phytoremediation strategies	190

		8.2.2 Potential of weed plants for phytoremediation	194
	8.3	Eco-restoration of metal-polluted sites	194
		8.3.1 Wetlands	194
		8.3.2 Mine soils	194
		8.3.3 Fly ash deposits	197
		8.3.4 Tannery sludge	200
	8.4	Conclusion	200
		References	200
CHAPTER	9	Biochemical and molecular aspects of heavy	
		metal stress tolerance in plants	205
		Bhupendra Koul, Simranjeet Singh, Siraj Yousuf Parray, Daljeet Singh Dhanjal, Praveen C. Ramamurthy and Joginder Singh	
	9.1	Introduction	205
	9.2	Mechanism of heavy metal tolerance	206
		9.2.1 Amino acids	206
		9.2.2 Phytochelatins	206
		9.2.3 Metallothioneins	207
	9.3	Role of metallothioneins in heavy metal tolerance	209
	9.4	Heavy metal tolerance	210
	9.5	Toxicity and heavy metal resistance in plants	213
	9.6	Heavy metal deposition molecular pathway in plants	213
	9.7	Conclusion and future scope	214
		Acknowledgment	215
		References	215
CHAPTER	10	Monitoring the process of phytoremediation	
		or neavy metals using spectral renectance and	210
		Balaji Bhaskar Maruthi Sridhar, Fengxiang X. Han and Yi Su	219
1	0.1	Introduction	219
1	0.2	Arsenic and chromium contamination	221
1	0.3	Spectral reflectance and remote sensing	223
1	0.4	Uptake and accumulation of As and Cr in fern	223
1	0.5	Uptake and accumulation of Cr in mustard	225
1	0.6	Internal structural changes of fern	227
1	0.7	Heavy metal-induced structural changes in mustard	233
1	0.8	Plant spectral reflectance	235
1	0.9	Spectral reflectance of brake fern	237

10.10	Conclusion	239
	Acknowledgment	240
	References	240
CHAPTER 11	Phytostabilization of metal mine tailings— a green remediation technology Lavanya Muthusamy, Manikandan Rajendran, Kavitha Ramamoorthy, Mathiyazhagan Narayanan and Sabariswaran Kandasamy	243
11.1 11.2 11.3 11.4 11.5	Introduction Impact of mine tailing on environmental Phyotostabilization of mine tailings Phytomining of mine tailing Conclusions References	243 244 246 247 249 249
CHAPTER 12	Phytoremediation of heavy metals, metalloids, and radionuclides: Prospects and challenges <i>Simranjeet Singh, Vijay Kumar, Daljeet Singh Dhanjal,</i> <i>Parul Parihar, Praveen C. Ramamurthy</i> <i>and Joginder Singh</i>	253
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	Introduction Special characteristics of phytoremediating plants Various mechanisms for removal of heavy metal metalloids and radionuclides 12.3.1 Phytodegradation 12.3.2 Phytoextraction 12.3.3 Phytofiltration 12.3.4 Phytostabilization 12.3.5 Phytovolatilization Methods for enhancing phytoremediation capabilities Genetic engineering Utilization of microbes for improving performance of plant Challenges associated with phytoremediation strategies Conclusion and future prospects Acknowledgment References	253 254 255 255 259 260 261 261 262 262 262 264 265 265 266 266
CHAPTER 13	Phytoremediation of metals: Lithium	277
	Sevinc Adiloglu, Deniz Izlen Cifci and Süreyya Meric	
13.1	Introduction	277

13.2	Materials and methods	279
	13.2.1 The characteristics of the plant used in plant	
	toxicity experiments	279
	13.2.2 Experimental design	281
	13.2.3 Plant analyses	281
	13.2.4 Soil analyses	281
	13.2.5 Statistics	282
13.3	Results and discussion	282
	13.3.1 Some chemical characteristics of the experimental soil	282
	13.3.2 Chemicals in soil and plant	283
13.4	Conclusion	287
	Acknowledgment	287
	References	287
CHAPTER 14	Aquatic macrophytes for environmental	
	pollution control	291
	Santosh Kumar, Nagendra Thakur, Ashish K. Singh	
	Bharat Arjun Gudade, Deepak Ghimire and Saurav Das	
14.1	Introduction	291
14.2	Macrophyte	292
14.3	Free-floating macrophytes	295
14.4	Submerged macrophytes	296
14.5	Emergent macrophyte	296
14.6	Sources of aquatic pollutants and their effects	296
	14.6.1 Domestic sewage	296
	14.6.2 Industrial waste	297
	14.6.3 Mining industry	297
14.7	Pesticides and fertilizers	297
14.8	Heavy metal pollution	298
14.9	Phytoremediation: a green and an eco-friendly technology	298
14.10	Phytofiltration (Rhizofilration)	299
14.11	Potential role of macrophytes for environmental	
	pollution control	300
	14.11.1 Azolla	301
	14.11.2 Eichhornia	301
	14.11.3 Lemna minor	302
	14.11.4 Potamogeton	302
	14.11.5 Wolfia and Wolfialla	303
14.12	Conclusion	304
	References	304

CHAPTER 15	Role of rhizobacteria from plant growth promoter	
	to bioremediator	309
	Shailja Sharma, Simranjeet Singh, Daljeet Singh Dhanja Akshay Kumar, Sadaf Jan, Praveen C. Ramamurthy and Joginder Singh	Ι,
15.1	Introduction	309
15.2	Characteristics of plant growth-promoting rhizobacteria	310
15.3	Influence of different bacterial species on rhizobacteria plant	
	growth-promoting rhizobacteria activity	311
	15.3.1 Pseudomonas species	311
	15.3.2 Bacillus species	312
	15.3.3 Rhizobium species	312
15.4	Mechanism of plant growth-promoting rhizobacteria	312
	15.4.1 Direct mechanism	313
	15.4.2 Indirect mechanism	315
15.5	Plant growth-promoting rhizobacteria as bioremediators	316
15.6	Potential role of plant growth-promoting rhizobacteria	
	in stress management	316
15.7	Conclusions	319
	Acknowledgment	319
	References	319
CHAPTER 16	Role of nanomaterials in phytoremediation	
	of tainted soil	329
	Sonali Mohanty, Srishti Chakraborty, Moumita Das and Subhankar Paul	
16 1	Introduction	220
16.1	Nanotechnology in soil remediation	329
10.2	16.2.1 Removal of heavy metals	330
	16.2.2 Removal of pesticides	334
	16.2.2 Removal of organic materials	336
16.3	Phytoremediation and contaminant removal	337
1010	16.3.1 Phytoextraction	338
	16.3.2 Phytodegradation	339
	16.3.3 Phytovolatilization	339
	16.3.4 Phytostabilization	339
	16.3.5 Rhizodegradation	340
16.4	Nanomaterial facilitated phytoremediation and	-
	contaminant removal	341
	16.4.1 Potential nanomaterials in phytoremediation of soil	342

16.5	Conclusion and future prospects	348
	References	349
CHAPTER 17	Green technology: Phytoremediation for pesticide pollution <i>Simran Takkar, Chitrakshi Shandilya, Rishabh Agrahari,</i> <i>Archi Chaurasia, Kanchan Vishwakarma,</i> <i>Swati Mohapatra, Ajit Varma and Arti Mishra</i>	353
17.1 17.2	Introduction Classification of pesticides 17.2.1 Classification of pesticides based on toxicity 17.2.2 Classification on the basis of entry 17.2.3 Classification on the basis of chemical composition and structure	353 354 354 355 355
17.3	17.2.4 Classification on the basis of the target pests they killHazardous impact of obsolete pesticides17.3.1 Impact of pesticides on environment17.2.2 Impact of the period of t	358 358 360
17.4	17.3.2 Impact of the use of pesticides on human healthSalient features of green technology17.4.1 Ozone17.4.2 Bioaugmentation17.4.3 Phytoremediation	362 363 363 364 365
17.5 17.6	Process of phytoremediation in pesticide removal Antioxidant defense: a key mechanism of pesticide	365
17.7	 Roles of transgenic plants in pesticide detoxification 17.7.1 Advantages of transgenic plants 17.7.2 Pesticide degrading enzymes in transgenic plants 17.7.3 Production of antibodies by transgenic plants for pesticide detoxification 	367 368 369 370 371
17.8	Conclusion References	371 372
CHAPTER 18	Phytoremediation of persistent organic pollutants: Concept challenges and perspectives <i>Prathmesh Anerao, Roshan Kaware,</i> <i>Akshay Kumar Khedikar, Manish Kumar and Lal Singh</i>	375
18.1 18.2	Introduction History, sources, and classification of persistent organic pollutants 18.2.1 History of persistent organic pollutants	375 377 377

	18.2.2 Sources of persistent organic pollutants	378
	18.2.3 Classification of persistent organic pollutants	378
18.3	Phytoremediation	381
	18.3.1 Mechanism of phytoremediation	381
	18.3.2 Endophytic associated phytoremediation	390
18.4	Polycyclic aromatic hydrocarbons phytoremediation	393
18.5	Conclusion and prospective	397
	Acknowledgment	397
	References	398
CHAPTER 19	Gene mediated phytodetoxification of	
	environmental pollutants	405
	Sakshi Agrawal, Vineet Kumar, Simranjeet Singh and	
	Sushil Kumar Shahi	
19.1	Introduction	405
19.2	Heavy metals as major soil contaminants	407
	19.2.1 Heavy metals	407
	19.2.2 Heavy metals' sources into the environment	407
	19.2.3 Impact of heavy metals in environment	408
19.3	Plant strategies in phytoremediation of heavy metals	409
	19.3.1 Phytoextraction	409
	19.3.2 Phytovolatilization	410
	19.3.3 Phytostabilization	410
	19.3.4 Phytofiltration	410
	19.3.5 Phytostimulation	410
19.4	Hyperaccumulator plants with their characteristics	
	and mechanism of action	411
	19.4.1 Heavy metal ion transporter	411
	19.4.2 Indigenous plant in phytoremediation of metal	412
	19.4.3 Weed plants as natural hyperaccumulators	412
	19.4.4 Genetically engineered plants as hyperaccumulators	
	in phytoremediation of heavy metals	413
	19.4.5 How do plants hyperaccumulate heavy metals?	414
19.5	Mechanisms of heavy metal accumulation, tolerance,	
	and detoxification in plants	414
	19.5.1 Avoidance in plants	419
	19.5.2 Tolerance in plants	419
	19.5.3 Cellular and molecular pathways in phytoremediation	419
19.6	Phytoremediation with transgenics	423

	19.6.1 Phytoremediation of organic pollutants with	
	transgenic plants	423
	19.6.2 Metal phytoremediation using transgenic plants	424
19.7	Increasing bioavailability of heavy metals	426
19.8	B Conclusion	427
	19.8.1 Concerns and future outlook	427
	Acknowledgment	428
	References	428
CHAPTER 20	Nano-phytoremediation technology in	
	environmental remediation	433
	Kiran Mustafa, Iqra Shakeel, Javaria Kanwal,	
	Sarah Farrukh, Sara Mussaddiq, Nadia Saddiq and	
	Muhammad Younas	
20.1	Introduction	433
20.2	2 Nano-phytoremediation technology for pesticides hazards	434
20.3	Nano-phytoremediation of contaminated soil	437
	20.3.1 Different soil pollutants and their	
	nano-phytoremediation	438
	20.3.2 Synthesized nanoparticles for decontamination of	
	pollutants in soil	440
20.4	Nano-phytoremediation for heavy metal contamination	442
	20.4.1 Heavy metal accumulator plants	443
00.1	20.4.2 Nanoparticles used for removal of heavy metals	446
20.:	Nano-phytoremediation for water contamination	448
20.0	20.5.1 Nanoparticles used for decontamination of water	449
20.0	Conclusion and future prospective	450
20.	References	451
	Neverbeters	401
CHAPTER 2	Nanophytoremediation technology: A better	
	approach for environmental remediation	450
	of toxic metals and dyes from water	459
	Sohel Das, Uma Sankar Mondal and Subhankar Paul	
21.	Introduction	459
21.2	2 Sources of contamination in water	460
21.3	B Conventional treatment for removal of metals and dyes	
	from waste water	460
21.4	Nanophytoremediation and its advantages	461
	21.4.1 Biosynthesis of nanoparticles	462
	21.4.2 Nanoparticles synthesized from plants	463

	21.4.3 Nanoparticles synthesized from microorganism	468
21.5	Different strategies for detection and removal of metals	
	and dyes from water	469
	21.5.1 Adsorption based metal and dye removal	471
	21.5.2 Fluorescence-based metal detection and removal	471
	21.5.3 Photocatalysis-based dye removal techniques	473
21.6	Toxicity and environmental impact of nanophytoremediation	475
21.7	Limitations and future prospects	476
21.8	Conclusion	477
	References	477
CHAPTER 22	Constructed wetlands plant treatment system:	
	An eco-sustainable phytotechnology for treatment	
	and recycling of hazardous wastewater	481
	María Alajandra Maina, Harnán Picarda Hadad	
	Gabriela Cristina Sanchez	
	María de las Mercedes Mufarrege	
	Gisela Alfonsina Di Luca. María Celeste Schierano.	
	Emanuel Nocetti, Sandra Ester Caffaratti	
	and María del Carmen Pedro	
22.1	Introduction	481
22.2	Wastewater from metallurgical industries	482
22.3	Sanitary effluents of a pet-care center	485
22.4	Fertilizer factory wastewater	486
22.5	Landfill leachate	489
22.6	Recycled paper industry	490
22.7	Conclusions	492
	Acknowledgments	493
	References	493
CHAPTER 23	Ecological aspects of aquatic macrophytes for	
	environmental nollution control. An eco-remedial	
	annroach	497
	laqueline S Santos Montcharles S Pontes	107
	Gilberto I Arruda Anderson R I Caires	
	Sandro M. Lima, Luis H.C. Andrade.	
	Marcelo L. Bueno, Valéria F.B. da Silva.	
	Renato Grillo and Etenaldo F. Santiago	
23 1	- Introduction	497
23.2	Macrophytes: From adverse effects to environmental solution	498
20.2		

23	.3 Macrophytes and the contaminated environment:	
	Discriminating between bioindication and phytoremediation	500
23	.4 Phytoremediation mechanisms related to macrophytes	501
23	.5 Nanoparticles: A potential contaminant and the role of	
	macrophytes in its phytoremediation	504
23	.6 Spectroscopic methods in monitoring and evaluation:	
	investigation to understand the interaction between	
	macrophytes and the environment	506
23	.7 Macrophytes as a biological model: Chlorophyll-a	
	fluorescence technique for detecting stress due to	
	environmental contamination	508
23	.8 Electrochemical sensors applied to the study of aquatic	
	phytoremediation by macrophytes	515
23	.9 Conclusions	517
	References	517
CHAPTER 2	A Phytoremediation of trace elements from	
	naner mill wastewater with Pictia stratiotes I	
	Motal accumulation and antiovidant response	522
	Wielan accumulation and antioxidant response	JZ3
	Kisnolay Mazumdar and Suchismita Das	
24	.1 Introduction	523
24	.2 Materials and methods	524
	24.2.1 Paper mill effluent (PME) collection and analysis	
	of trace elements	524
	24.2.2 Plant sample collection	524
	24.2.3 Experimental set up	525
	24.2.4 Harvesting and plant growth estimation	525
	24.2.5 Determination of membrane injury index (MI)	525
	24.2.6 Estimation of total chlorophyll and carotenoid	525
	24.2.7 Lipid peroxidation, soluble protein, and free amino	
	acid contents	525
	24.2.8 Determination of hydrogen peroxide (H_2O_2) and	
	superoxide radical (O_2^-)	526
	24.2.9 Measurement of antioxidant enzyme activity	526
	24.2.10 Determination of heavy metal in plant, wastewater	526
	24.2.11 Calculation of phytoremediation potential of plants	526
	24.2.12 Statistical analysis	526
24	.3 Results	527
	24.3.1 Effect of paper mill wastewater on plant growth	
	parameters and plant pigments	527

	24.3.2 Effect of paper mill wastewater on oxidative	
	stress levels	527
	24.3.3 Effect of PME on antioxidant activity	528
	24.3.4 Metal content in plant tissue	528
	24.3.5 Translocation factor (TF), and enrichment coefficient	
	(EC) of trace elements	529
	24.3.6 Pistia stratiotes improved the wastewater quality	
	in terms of trace elements	529
24.4	Discussion	530
	References	533
CHAPTER 25	Electrokinetic-assisted phytoremediation	
	of heavy metal contaminated soil: Present	
	status, challenges, and opportunities	537
	Claudio Cameselle, Susana Gouveia, Adrián Cabo and Krishna R. Reddy	
25.1	Remediation of contaminated soil	537
25.2	Phytoremediation	538
25.3	Electrokinetic remediation	540
25.4	Coupled technology electrokinetics phytoremediation	541
	25.4.1 Electrophytoremediation at lab scale	542
	25.4.2 Effect of the DC electric field	544
	25.4.3 Enhancement with chelating agents	545
	25.4.4 Application of AC/DC electric field	546
25.5	Influence of electrode configuration	548
25.6	Impacts on soil properties and microbial community	550
25.7	Patents and applications	551
25.8	Conclusions	552
	References	553
CHAPTER 26	Microbes-assisted phytoremediation of	
		EEE
	progress, chanenges, and future prospects	555
	Santosh Kumar, Nagendra Thakur, Ashish K. Singh, Bharat Arjun Gudade, Deepak Ghimire and Saurav Das	
26.1	Introduction	555
26.2	Fundamentals concept of phytoremediation practices	557
26.3	Microorganisms-assisted phytoremediation: An optimistic	
	tools for remediation of environmental pollutants	558
26.4	Plant growth-promoting rhizobacteria assisted	
	phytoremediation	559

26.5	Endophyte-assisted phytoremediation of organic	
	and inorganic pollutants	559
26.6	Genetically modified microbe-assisted phytoremediation	561
26.7	Microbe-assisted phytoremediation of heavy metal	562
26.8	Microbe-assisted phytoremediation of agricultural chemicals	:
	Herbicides, pesticides, and fertilizers	563
26.9	Microbe-assisted phytoremediation of petroleum and	
	aromatic compounds	564
26.10	Worldwide emerging issues and challenges	565
	References	566
CHAPTER 27	Electricity production and the analysis of the	
	anode microbial community in a constructed	
	wetland-microhial fuel cell	571
	Sen Wang and Fanlong Kong	• · ·
27 1	Introduction of constructed wetland microbial fuel cell	571
27.1	27.1.1 Construction of constructed wetland microbial fuel ce	sii 571
	27.1.2 The principle of CW-MEC	576
	27.1.3 The application of CW-MFC in environmental	270
	remediation	578
27.2	Power generation performance & its influencing factors	
	of CW-MFC	578
	27.2.1 Influence of CW-MFC structure	578
	27.2.2 Effect of electrode materials	580
	27.2.3 Effect of electrode spacing	585
	27.2.4 Impact of plants	587
	27.2.5 Matrix effects	589
27.3	Analysis of microbial community structure in anode	
	of CW-MFC	591
	27.3.1 Influencing factors of anode microbial community	591
	27.3.2 The development of detection technology for	
	anode microorganism	592
27.4	Summary	596
	References	596
CHAPTER 28	Phytocapping technology for sustainable	
	management of contaminated sites: case studies,	
	challenges, and future prospects	601
	Komal Prasad, Hemant Kumar, Lal Singh,	
	Ankush D. Sawarkar, Manish Kumar and Sunil Kumar	
28.1	Introduction	601

28.2	Phytocapping	603
28.3	Mechanism and strategy of phytocapping	606
28.4	Case studies	608
	28.4.1 Case study 4.1	608
	28.4.2 Case study 4.2	608
	28.4.3 Case study 4.3	608
	28.4.4 Case study 4.4	609
	28.4.5 Case study 4.5	609
28.5	Opportunities, challenges, and future aspects	609
	28.5.1 Opportunities	609
	28.5.2 Challenges	610
	28.5.3 Future prospects	611
28.6	Conclusion	611
	Acknowledgment	612
	References	612
Index		617

Contributors

E.A. Adebayo

Microbiological Unit, Pure and Applied Biology Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

Sevinc Adiloglu

Tekirdag Namik Kemal University, Agricultural Faculty, Department of Soil Science and Plant Nutrition, Tekirdag, Turkey

Rishabh Agrahari

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Sakshi Agrawal

Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India

S.O. Ajao

Environmental Unit, Pure and Applied Biology Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

Luis H.C. Andrade

Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais, Grupo de Espectroscopia Óptica e Fototérmica, Dourados, MS, Brasil

Prathmesh Anerao

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Gilberto J. Arruda

Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais, Grupo de Estudos em Eletroquímica, Dourados, MS, Brasil

Sara Julliane Ribeiro Assunção

Federal University of Sergipe, São Cristóvão, Brazil

Sneha Bandyopadhyay

Restoration Ecology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India

Cácio Luiz Boechat

Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus, Brazil

Marcela Rebouças Bomfim

Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil

Marcelo L. Bueno

Universidade Estadual de Mato Grosso do Sul (UEMS), Mundo Novo, MS, Brasil

Adrián Cabo

PhD Student, BiotecnIA, Department of Chemical Engineering, University of Vigo, Vigo, Spain

Anderson R.L. Caires

Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Física, Grupo de Ótica e Fotônica, Campo Grande, MS, Brasil

Claudio Cameselle

Associate Professor, BiotecnIA, Department of Chemical Engineering, University of Vigo, Vigo, Spain

Emanuelle Burgos Cardoso

Federal University of Viçosa, Viçosa, Brazil

Kaíque Mesquita Cardoso

Federal Institute of Education, Science and Technology of Norte de Minas Gerais, Araçuaí, Brazil

María Celeste Schierano

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Srishti Chakraborty

Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Orissa, India

Archi Chaurasia

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Gabriela Cristina Sanchez

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Daniel Gomes Coelho

Federal University of Viçosa, Viçosa, Brazil

Valéria F.B. da Silva

Universidade Estadual de Mato Grosso do Sul (UEMS), Mundo Novo, MS, Brasil

Moumita Das

Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Orissa, India

Saurav Das

Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States

Sohel Das

Structural Biology and Nanomedicine Lab, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Orissa, India

Suchismita Das

Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India

Bidyalaxmi Devi

Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Itanagar, Arunachal Pradesh, India

Chinmayee M. Devi

Department of Botany, Sree Ayyappa College for Women, Nagarcoil, Tamil Nadu, India

Daljeet Singh Dhanjal

Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India

Gisela Alfonsina Di Luca

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Nawal Kishore Dubey

Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India

Sandra Ester Caffaratti

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Sarah Farrukh

SCME National University of Sciences and Technology (NUST), Islamabad, Pakistan

Deepak Ghimire

Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States

Dipita Ghosh

Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Susana Gouveia

Postdoctoral Researcher, BiotecnIA, Department of Chemical Engineering, University of Vigo, Vigo

Renato Grillo

Universidade Estadual Paulista (UNESP), Departamento de Física e Química, Faculdade de Engenharia, Ilha Solteira, Brasil

Bharat Arjun Gudade

Spice Park, Spices Board, Chhindwara, Madhya Pradesh, India

Hernán Ricardo Hadad

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Fengxiang X. Han

Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, United States

Anindita Hazarika

Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, Arunachal Pradesh, India

Deniz Izlen Cifci

Tekirdag Namik Kemal University, Corlu Engineering Faculty, Environmental Engineering, Corlu, Turkey

Sadaf Jan

Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India

Javaria Kanwal

Department of Chemistry, The Women University Multan, Pakistan

Kavitha Ramamoorthy

Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, Tamil Nadu, India

Roshan Kaware

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Akshay Kumar Khedikar

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Komal Prasad

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Fanlong Kong

College of Environmental Science and Engineering, Qingdao University, Qingdao, China

Bhupendra Koul

School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

Akshay Kumar

Department of Biochemistry, DAV University, Jalandhar Punjab, India

Hemant Kumar

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Manish Kumar

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Santosh Kumar

Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India

Sunil Kumar

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Vijay Kumar

Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Madhya Pradesh, India

Vineet Kumar

Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur-440020, Maharashtra, India

Lavanya Muthusamy

Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, Tamil Nadu, India

Sandro M. Lima

Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais, Grupo de Espectroscopia Óptica e Fototérmica, Dourados, MS, Brasil

Arjun Mahato

Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

María Alejandra Maine

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Subodh Kumar Maiti

Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Manikandan Rajendran

Department of Biotechnology, Padmavani Arts and Science College for Women, Salem, Tamil Nadu, India

Mathiyazhagan Narayanan

PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Tamil Nadu, India

Kisholay Mazumdar

Aquatic Toxicology and Remediation Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India

Süreyya Meric

Tekirdag Namik Kemal University, Corlu Engineering Faculty, Environmental Engineering, Corlu, Turkey

Rafael de Souza Miranda

Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus, Brazil

Arti Mishra

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Sonali Mohanty

Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Orissa, India

Swati Mohapatra

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Uma Sankar Mondal

Structural Biology and Nanomedicine Lab, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Orissa, India

María de las Mercedes Mufarrege

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Sara Mussaddiq

Department of Chemistry, The Women University Multan, Pakistan

Kiran Mustafa

Department of Chemistry, The Women University Multan, Pakistan; Higher Education Department, Punjab, Pakistan

Emanuel Nocetti

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

A.F. Ogundola

Environmental Unit, Pure and Applied Biology Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

Özge Bahar Özkoç

Department of Environmenal Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey

Parul Parihar

Department of Botany, Lovely Professional University, Phagwara, Punjab, India

Siraj Yousuf Parray

Department of Botany, Government Degree College, Bijbehara, Jammu and Kashmir, India

Subhankar Paul

Structural Biology and Nanomedicine Lab, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Orissa, India

María del Carmen Pedro

Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero, Santa Fe, Argentina

Montcharles S. Pontes

Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais, Grupo de Estudos dos Recursos Vegetais, Dourados, MS, Brasil

Jitendra Prasad

Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India

Praveen C. Ramamurthy

Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, India

Vivek Rana

Central Pollution Control Board, Ministry of Environment, Forest, and Climate Change, Delhi, India

Krishna R. Reddy

Professor, University of Illinois at Chicago, Department of Civil and Materials Engineering, Chicago, IL, United States

Sabariswaran Kandasamy

Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China

Nadia Saddiq

Department of Chemistry, The Women University Multan, Pakistan

Shilpa Sakia

Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, Arunachal Pradesh, India

Etenaldo F. Santiago

Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais, Grupo de Estudos dos Recursos Vegetais, Dourados, MS, Brasil

Jaqueline S. Santos

Universidade Estadual de Mato Grosso do Sul (UEMS), Centro de Estudos em Recursos Naturais, Grupo de Estudos dos Recursos Vegetais, Dourados, MS, Brasil

Jorge Antonio Gonzaga Santos

Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil

Ankush D. Sawarkar

Department of Computer Science and Engineering, Visveshvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, India

Sushil Kumar Shahi

Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India

Iqra Shakeel

SCME National University of Sciences and Technology (NUST), Islamabad, Pakistan; IESE, SCEE National University of Sciences and Technology (NUST), Islamabad, Pakistan

Chitrakshi Shandilya

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Shailja Sharma

School of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India

Bijendra Kumar Singh

Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India

Lal Singh

CSIR—National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India

Simranjeet Singh

Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, India

Joginder Singh

School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

Ashish K. Singh

Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India

Balaji Bhaskar Maruthi Sridhar

Department of Earth and Environment, Florida International University, Miami, FL, United States

Yi Su

School of Science and Computer Engineering, University of Houston-Clear Lake, Houston, TX, United States

T.S. Swapna

Department of Botany, Sree Ayyappa College for Women, Nagarcoil, Tamil Nadu, India; Department of Botany, University of Kerala, Kerala, India

Simran Takkar

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Nagendra Thakur

Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India

Shikha Tiwari

Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India

Ajit Varma

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Kanchan Vishwakarma

Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India

Sen Wang

College of Environmental Science and Engineering, Qingdao University, Qingdao, China

Meera Yadav

Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, Arunachal Pradesh, India

Hardeo Singh Yadav

Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, Arunachal Pradesh, India

Günay Yildiz Töre

Department of Environmenal Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey

Muhammad Younas

Chemical Engineering Department, University of Engineering & Technology, Peshawar, KPK, Pakistan

About the editors

Vineet Kumar is currently working as a Senior Project Associate in the Waste Re-processing Division at CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, Maharashtra, India. Before his joining, he worked as Assistant Professor (Ad-hoc) in the Department of Botany at Guru Ghasidas Vishwavidyalaya, Bilaspur, India. He was an Assistant Professor and Academic Coordinator at Vinayak Vidyapeeth, Meerut, Uttar Pradesh. Dr. Kumar received his M.Sc. and M.Phil. degrees in Microbiology from Ch. Charan

Singh University, Meerut, India. He received the Ph.D. degree in Environmental Microbiology from Babasaheb Bhimaro Ambedkar (A Central) University, Lucknow, India, and later worked at the Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India, as a Guest Faculty where he taught courses in General Microbiology, Microbial Genetics, Molecular Biology, and Environmental Microbiology to students of post-graduate-level. He was a Senior Researcher in the School of Environmental Sciences, Jawaharlal Nehru University, Delhi, India, and worked on biodiesel production from oleaginous microbes and industrial sludge. He awarded a Rajiv Gandhi National Fellowship by the University Grants Commission, India, to support his doctoral work on "Distillery Wastewater Treatment" in 2013. His research interests includes bioremediation, phytoremediation, metagenomics, wastewater treatment, environmental monitoring, and bioenergy and biofuel production. Currently, his research mainly focuses on the development of integrated and sustainable methods that can help in minimizing or eliminating hazardous substances in the environment. He is the author of numerous research/review articles published in international peerreviewed journals from Springer Nature, Frontiers, Wiley, and Elsevier on the different aspects of bioremediation, phytoremediation, and metagenomics of industrial waste polluted sites. In addition, he has published 14 Books on different aspects of Phytoremediation, Bioremediation, Wastewater Treatment, Omics, Genomics, and Metagenomics by CRC Press (Taylor & Francis Group), Springer, Wiley etc. His recently published books are "Recent Advances in Distillery Waste Management for Environmental Safety" (From CRC Press; Taylor & Francis Group, USA), and Microbe-Assisted Phytoremediation of Environmental Pollutants: Recent Advances and Challenges (from CRC Press; Taylor & Francis Group, USA). Dr. Kumar has been serving as a guest editor and reviewer in many prestigious International Journals, including Frontiers in Microbiology, Environmental Research, Chemosphere, Journal of Basic Microbiology; International Journal of Environmental Science and Technology; CLEAN-Soil, Air, Water etc. He is an active member of numerous scientific societies and has served on the editorial board of the journal Current Research in Wastewater Management. As part of his interest in teaching biology, he is founder of the Society for Green Environment, India (website: www.sgeindia.org). He can be reached at drvineet.micro@gmail.com; vineet.way18@gmail.com.

Maulin P. Shah is an Active Researcher and Scientific Writer in his field for over 22 years. He received the Ph.D. degree (2009) in Microbiology from Sardar Patel University, Vallabh Vidyanagar (Gujarat), India. His research interests include biological wastewater treatment, environmental microbiology, biodegradation, bioremediation, & phytoremediation of environmental pollutants from industrial wastewaters. He has published more than 250 research papers in national and international journals of repute on various aspects of microbial biodegradation and

bioremediation of environmental pollutants. He has edited 52 books published from Elsevier, Springer, CRC Press, RSC, De Gruyter. He has been presented several papers relevant to his research areas in national and international conferences. He has been also serving as a regular reviewer for various scientific journals in his research areas. He is the Founder Editor-in-Chief of the *International Journal of Environmental Bioremediation & Biodegradation* (Science and Education Publishing, USA; from 2011 to 2014) and the *Journal of Applied & Environmental Microbiology* (Science and Education Publishing, USA; from 2011 to 2014). He is the Editor-in-Chief of the *Journal of Advances in Biotechnology* (JBT). He is also the Editor and Associate Editor of many scientific journals in his field. He is also serving as a member of the Editorial Board of the more than 200 scientific journals published by the reputed publisher.

Sushil Kumar Shahi is currently working as an Associate Professor in the Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (GGV), Bilaspur, Chhattisgarh, India. He received the Ph.D. degree in 1998 from Allahabad University, Allahabad, Uttar Pradesh (UP), India, on Antimycotic studies of some plants (control of dermatophytoses in human beings). After completion of his education, he joined Allahabad University as a Research Scientist and worked for up to 6 years and in 2004 he joined the J.V. College, Baraut, UP,

to 6 years and in 2004 he joined the J.V. College, Baraut, UP, as Lecturer in Microbiology for teaching and research. In 2007, he left the College and joined Ch. Charan Singh University, Meerut, UP, India, as Assistant Professor in Microbiology for teaching and research, after 7 years of servicing in CCS University he joined GGV as Associate Professor in Botany in 2013. He has experience of 25 years in teaching and research environmental microbial technology, nanobiotechnology, herbal technology, herbal antimicrobials, and IPR. He has published more than 56 original research articles in various reputed national and international journals. He has been awarded a Fellow of various national level scientific societies, namely, Indian Botanical Society, Indian Phytopathological Society, Indian Society of Plant Pathologist, International Young Scientist Association. He has developed herbal

medicine for the control of dermatophytosis and onchycomycosis, tinea in animal and human beings; he has also developed various microbial and herbal formulations for the control of plant disease. Some products are as follows: PROTECTON (Postharvest spoilage in fruits (apple and Grapes), NAILGUARD (Onchomycosis (fungal nail infection), PESTOBAN (Herbal pesticide for post harvested food grains), and SKINPRO (Dermatophytosis). He obtained Patents on some herbal products for the control of fungal disease in humans from the USA, UK, Japan, and India. Currently, he is trying to develop some eco-friendly technology as microbial-based fuel-cells, biodegradable polythene, and bioremediation of toxic pollutant from the environment.

Preface

Environmental pollution with heavy metals and refractory organic chemicals is a global problem that has resulted from rapid mining, military, industrial, agricultural farming, and waste management practices. In addition to their negative effects on aquatic and terrestrial ecosystems and other natural resources, these pollutants accumulate in the food chain through agricultural products or leach into ground water and pose a great harm to humans, animals, plants, and the whole environment of our modern society. There are several evidence that this cocktail of pollutants is a contributor to the global epidemic of cancer and other degenerative diseases. Thus, there is an immediate demand at the regional, local, and global level to decontaminate polluted soil, water, and air to counteract the adverse effects on human health and conserve the environment for our future generations. Since conventional and physicochemical technologies employed for remediating the polluted habitats have many potential drawbacks including expensive and not environment friendly as they generate toxic by-products and large amounts of sludge, which also requires safe disposal and can also cause secondary pollution and lower sustainability. Increased need for the remediation of the heavy metals, organic chemicals, and other contaminants from polluted soil and water has created a demand for improved and newer remediation technologies that are applicable at economical, low waste generation, and environmentally friendly ways to restore the contaminated sites for human rehabilitation and agricultural production in an effective and more sustainable manner, and have a wider scope of waste management.

Phytoremediation in recent years has emerged as an energy-efficient and ecofriendly technology for decontamination of soil, surface and groundwater, air, or other polluted media. Phytoremediation refers to a set of techniques emphasizing the efficient use of plants, their related enzymes, and associated microbes for transportation, sequestration, detoxification, and mineralization of toxicants through complex natural biological, physiological, and chemical processes. This technology can be used to clean up and/or stabilize both inorganic and organic contaminants and has been considered to be the most promising technology due to its minimal site disturbance and low cost and higher public acceptance when compared with conventional remediation methods. It is an emerging green approach where plants are grown in contaminated soil, sediment, and water to increase the decomposition or removal rate of inorganic and organic pollutants *in planta* as well as *ex planta*.

The present book, *Phytoremediation Technology for the Removal of Heavy Metals* and Other Contaminants From Soil and Water, as the title implies, describes the numerous phytoremediation technologies which can be and has been applied to the cleanup of soil, water, and sediment contaminated with various toxic and hazardous *Heavy Metals And Other Contaminant*, to protect the environment and human health for sustainable development. Written for both academics and practitioners, the book provides detailed knowledge of various phytoremediation research, recent development, real-world applicability of that knowledge, and success stories related to phytoremediation of polluted habitats. In this book, we have attempted in several ways to attempt to explore the recent advances in plant-microbes based technologies and their diverse applications to the sustainable development of human life. This whole book is spread over 28 diverse chapters and offers an updated and detailed account of the latest research and development in different aspects of phytoremediation for the removal/remediation of heavy metals and other contaminants from soil and water for safety to public health.

Chapter 1 discusses the numerous bioremediation and phytoremediation technologies for environmental cleanup. Chapter 2 presents a detailed account of the phytoremediation as an ultimate approach for reinstating soil contaminated with heavy metals and other pollutants.

Chapter 3 describes the prospects of numerous plant species that display expressive mechanisms for efficiently uptake, translocate, and sequester the heavy metals and chemical pollutants from the contaminated environment. Chapter 4 discusses the recent developments in aquatic macrophytes for environmental pollution control with a case study grown on heavy metal removal from lake water and agricultural return wastewater with the use of Duckweed (Lemnacea). Chapter 5 provides comprehensive information about the phytoremediation potential of various weed plants belonging to the families Amaranthaceae and Euphorbiaceae grown on heavy metal contaminated soil. Chapter 6 describes the role of oxidoreductase metalloenzymes in the phytoremediation of environmental pollutants. Chapter 7 deals with an updated account of phytoextraction as an effective sustainable green approach to remediate the major environmental pollutants along with its challenges and future perspectives. Chapter 8 discusses and highlights the prospects and potential of various weed plants in phytoremediation and eco-restoration of heavy of metal-contaminated environments. Chapter 9 gives a brief account of the biochemical and molecular events in plants undergoing inorganic stress and the various strategies developed by the plants to ameliorate the metal toxicity. Chapter 10 discusses the monitoring of the process of phytoremediation of heavy metals using spectral reflectance and remote sensing. Chapter 11 emphasizes the environmental and health impacts of mine tailings and a potential method of removal and reduction of leaching toxic metals in mine tailings via phytostabilization as a green remediation technology. Chapter 12 discusses the applicability and drawbacks of phytoremediation along with the strategies for improving and modifying certain traits of plants to ascertain effective phytoremediation of heavy metals, metalloids, and radionuclides. Chapter 13 explains the role of Cress (Lepidium sativum L.) in phytoremediation of lithium, a toxic metals. Chapter 14 summarizes the advancement in macrophytes' use for bioremediation of different chemical compounds and the management of the aquatic environment. Chapter 15 provides a summary and discusses the role of PGPR in improving crop productivity and health. It also discusses its influence on other bacterial species, the mechanism involved, role in bioremediation and stress management. Chapter 16 discusses the different approaches for remediation of contaminated soil by using plants and explains role

of nanomaterials in phytoremediation of tainted soil. Chapter 17 gives an overview of different classes of pesticides, focuses on the role of phytoremediation technology on pesticide pollution, processes uptaken by plants in eliminating these pollutants, and shedding light on the rhizospheric plant bacterial association for the enhanced degradation. Chapter 19 discusses the role of plat's genes in detoxification and mitigation of heavy metals and organic contaminants pollution abatement. Chapter 20 explains the role of nano-phytoremediation technology in environmental remediation along with future endeavors. Chapter 21 describes the various biosynthesis procedures for the production of nanoparticles from plants, microorganisms and fungi, and their different strategies for the potential application in environmental clean-up, especially heavy metals. Chapter 22 explains the role and potential of constructed wetlands plant treatment system for the treatment and recycling of hazardous wastewater. Chapter 23 gives general and specific information on the ecological characteristics and biological mechanisms involved in the phytoremediation process by aquatic macrophytes. Chapter 24 presents a case study on phytoremediation of trace elements from paper mill wastewater with Pistia stratiotes L. and explains metal accumulation and antioxidant response during remediation. Chapter 25 discusses the role of the coupled phytoremediation-electrokinetic technology in phytoremediation of heavy metals contaminated soils. Chapter 26 presents a comprehensive review of the role of microbes-assisted phytoremediation in remediation of environmental contaminants. Chapter 27 describes the recent progressions application of constructed wetland microbial fuel cell in electricity production and the analysis of the anode microbial community during wastewater treatment. Chapter 28 gives a critical insight about eco-friendly phytocapping technology for sustainable management of landfill sites.

All the chapters in the book are written by authors in a more comprehensive way and are meticulously prepared with fabulous figures, graphs, and tables to make the information easier to understand, and are supported by an extensive list of references and URLs for readers interested in learning further details about the subject matter. The main aim of the book is to focus on the use of phytoemediation technologies in cleanup the polluted environment and make the depleted or degraded fields/water bodies fertile and rejuvenated in order to maintain sustainability.

This book generally brings a contemporary outlook on the modern aspects of environmental decontamination technologies. We are hopeful that this book will be useful to researchers, students, academics, scientists, engineers, government officers, process managers, and practicing professionals, who are interested and/or working in the area of phytoremediation or bioremediation of the environment and related subjects. As an excellent state-of-the-art reference material, the book will contain rich knowledge on the principles and provide them in-depth understanding and comprehensive information of current green technologies, their different environmental applications, recent advantages and disadvantages, critical analysis and modeling of the processes, and future perspective toward research directions and development.

Phytoremediation is still very much an evolving technology; there is a need for more research and development to identify and overcome the limitations and a real need to establish a critical dialogue among scientists, engineers, and environmental Last but not the least, Dr. Vineet Kumar would like to acknowledge his family members with love and affection in particular his parents (Mr. Niranjan Singh and Mrs. Pawan Devi), younger brother Rohit Chowdhary, and sister Ms. Khushboo.

Finally, I would like to apologize in advance for any errors that may occur in the text, and express my heartfelt embarrassment

We should be pleased to receive any comments on the content and style of *Phytoremediation Technology for the Removal of Heavy Metals and other Contaminants from Soil and Water* from students, professionals, environmentalist, and policy makers, all of which will be given serious consideration for inclusion in any further editions.

> Vineet Kumar Maharashtra, India Maulin P. Shah Gujarat, India Sushil Kumar Shahi Chhattisgarh, India